Unsere Empfehlungen



Lieferungen nach Deutschland sind immer versandkostenfrei.

→ So funktioniert unser Förderkonzept.
Steigern Sie die finanzielle Unterstützung Ihrer Bestellung.


Weitere Kooperationspartner

nicht vorhanden

nicht vorhanden

Doing Data Science

Straight Talk from the Frontline
52,50 €
auf Lager
EAN / 13-stellige ISBN: 978-1449358655
Lieferung bis Sa, 20.Jul. (ca. ¾), oder Mo, 22.Jul. (ca. ¼): bestellen Sie in den nächsten 9 Stunden, 11 Minuten mit Paketversand. Siehe Details.
Benachrichtigungen aktivieren


Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.

In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.

Topics include:
* Statistical inference, exploratory data analysis, and the data science process
* Algorithms
* Spam filters, Naive Bayes, and data wrangling
* Logistic regression
* Financial modeling
* Recommendation engines and causality
* Data visualization
* Social networks and data journalism
* Data engineering, MapReduce, Pregel, and Hadoop

Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.


Rachel Schutt is the Senior Vice President for Data Science at News Corp. She earned a PhD in Statistics from Columbia University, and was a statistician at Google Research for several years. She is an adjunct professor in Columbia's Department of Statistics and a founding member of the Education Committee for the Institute for Data Sciences and Engineering at Columbia. She holds several pending patents based on her work at Google, where she helped build user-facing products by prototyping algorithms and building models to understand user behavior. She has a master's degree in mathematics from NYU, and a master's degree in Engineering-Economic Systems and Operations Research from Stanford University. Her undergraduate degree is in Honors Mathematics from the University of Michigan.


EAN / 13-stellige ISBN 978-1449358655
10-stellige ISBN 1449358659
Verlag O'Reilly UK Ltd.
Sprache Englisch
Editionsform Hardcover / Softcover / Karten
Einbandart Taschenbuch
Erscheinungsdatum 1. November 2015
Seitenzahl 405
Format (L×B×H) 22,8cm × 15,3cm × 2,7cm
Gewicht 594g
Warengruppe des Lieferanten Naturwissenschaften - Informatik, EDV
Mehrwertsteuer 7%
Andere Leute, die diesen Artikel gekauft haben, haben auch gekauft:

Erschienen am: 1. März 2016
Halbleinen ·  auf Lager
25,00 €
Erschienen am: 14. Februar 2014
Taschenbuch ·  auf Lager
19,90 €
von: Wolf Haas
Erschienen am: 8. Februar 2016
Taschenbuch ·  auf Lager
9,99 €
Erschienen am: 14. Februar 2018
Gebunden ·  auf Lager
22,00 €

Alle angegeben Preise enthalten die gesetzliche Mehrwertsteuer.