Product Analytics – Joanne Rodrigues | buch7 – Der soziale Buchhandel
Bitte warten ...
icon suche icon merkliste icon warenkorb
Blick ins Buch

Product Analytics

Applied Data Science Techniques for Actionable Consumer Insights

Use Product Analytics to Understand and Change Consumer Behavior at Scale

Product Analytics is a complete, hands-on guide to generating actionable business insights from customer data. Experienced data scientist and enterprise manager Joanne Rodrigues introduces practical statistical techniques for determining why things happen and how to change, at scale, what people do. She complements these with powerful social science techniques for creating better theories, designing better metrics, and driving more rapid and sustained behavior change.

This book fills the gaps that many other data science book leave behind: how to start a new data science project; how to conceptualize complex ideas; building metrics from the statistic and demographic fundamentals; projecting consumer populations and material needs for a business; and causal inference beyond simple A/B testing techniques, such as difference-in-difference, regression discontinuity, propensity score matching, and uplift modelling.

Writing for entrepreneurs, product managers, marketers, and other business analytics professionals, Rodrigues teaches through intuitive examples from both web and offline environments. Avoiding math-heavy explanations, she guides you step by step through choosing the right techniques and algorithms for each application, running analyses in the R programming language, and getting answers you can trust.

Whatever your product or service, this guide can help you create precision-targeted marketing campaigns, improve consumer satisfaction and engagement, and grow revenue and profits.

  • Develop core metrics and effective KPIs for user analytics in any web product
  • Truly understand statistical inference, and the differences between correlation and causation
  • Build intuitive predictive models to capture user behavior in products
  • Tease out causal effects from observational data using modern, quasi-experimental designs and statistical matching
  • Improve response through uplift modeling and other sophisticated targeting methods
  • Project business costs and product population changes via advanced demographic techniques
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside the book for details.
E-Book 08/2020
Ebook-pdfPDF Ebook-openkein Kopierschutz
  • Ebook-funktion-ereadereReader
  • Ebook-funktion-kindlekindle
  • Ebook-funktion-computerComputer
  • Ebook-funktion-smartphoneSmartphone

Ebook-funktion-keinaccountkein Adobe Account notwendig | Ebook-funktion-schrift-fest Schriftgröße ist nicht veränderbar/einstellbar

Sie erhalten nach dem Kauf das Buch als ganz normale PDF-Datei, die Sie an jedem Gerät lesen können, das PDFs anzeigen kann. PDFs werden überall gleich angezeigt. Wir empfehlen dieses Format, da es ohne DRM (digitales Rechte-Management) auskommt.

Sofort lieferbar (Download)

Die angegebene Lieferzeit bezieht sich auf sofortige Zahlung (z.B. Zahlung per Lastschrift, PayPal oder Sofortüberweisung).
Sonderfälle, die zu längeren Lieferzeiten führen können (Bsp: Bemerkung für Kundenservice oder Zahlung per Vorkasse) haben wir hier für Sie detailliert beschrieben.

Spenden icon Dank Ihres Kaufes spendet buch7 ca. 1,38 € bis 2,57 €.

Die hier angegebene Schätzung beruht auf dem durchschnittlichen Fördervolumen der letzten Monate und Jahre. Über die Vergabe und den Umfang der finanziellen Unterstützung entscheidet das Gremium von

Die genaue Höhe hängt von der aktuellen Geschäftsentwicklung ab. Natürlich wollen wir so viele Projekte wie möglich unterstützen.

Den tatsächlichen Umfang der Förderungen sowie die Empfänger sehen Sie auf unserer Startseite rechts oben, mehr Details finden Sie hier.

Weitere Informationen zu unserer Kostenstruktur finden Sie hier.



Joanne Rodrigues is an experienced data scientist with master's degrees in mathematics, political science, and demography. She has six years of experience in statistical computing and R programming, as well as experience with Python for data science applications. Her management experience at enterprise companies leverages her ability to understand human behavior by using economic and sociological theory in the context of complex mathematical models.


Preface xvii
Acknowledgments xxiii
About the Author xxv

Part I: Qualitative Methodology 1
  Chapter 1: Data in Action: A Model of a Dinner Party 3
1.1 The User Data Disruption 4
1.2 A Model of a Dinner Party 7
1.3 What's Unique about User Data? 13
1.4 Why Does Causation Matter? 23
1.5 Actionable Insights 24

Chapter 2: Building a Theory of the Social Universe 25
2.1 Building a Theory 25
2.2 Conceptualization and Measurement 36
2.3 Theories from a Web Product 40
2.4 Actionable Insights 46

Chapter 3: The Coveted Goalpost: How to Change Human Behavior 47
3.1 Understanding Actionable Insight 47
3.2 It's All about Changing "Your" Behavior 50
3.3 A Theory about Human Behavioral Change 55
3.4 Change in a Web Product 59
3.5 What Are Realistic Expectations for Behavioral Change? 61
3.6 Actionable Insights 66

Part II: Basic Statistical Methods 67
  Chapter 4: Distributions in User Analytics 69
4.1 Why Are Metrics Important? 69
4.2 Actionable Insights 82

Chapter 5: Retained? Metric Creation and Interpretation 85
5.1 Period, Age, and Cohort 85
5.2 Metric Development 91
5.3 Actionable Insights 106

Chapter 6: Why Are My Users Leaving? The Ins and Outs of A/B Testing 107
6.1 An A/B Test 107
6.2 The Curious Case of Free Weekly Events 109
6.3 But It's Correlated ... 113
6.4 Why Randomness? 117
6.5 The Nuts and Bolts of an A/B Test 119
6.6 Pitfalls in A/B testing 132
6.7 Actionable Insights 135

Part III: Predictive Methods 137
  Chapter 7: Modeling the User Space: k-Means and PCA 139
7.1 What Is a Model? 139
7.2 Clustering Techniques 140
7.3 Actionable Insights 150

Chapter 8: Predicting User Behavior: Regression, Decision Trees, and Support Vector Machines 151
8.1 Predictive Inference 151
8.2 Much Ado about Prediction? 152
8.3 Predictive Modeling 154
8.4 Validation of Supervised Learning Models 169
8.5 Actionable Insights 172

Chapter 9: Forecasting Population Changes in Product: Demographic Projections 173
9.1 Why Should We Spend Time on the Product Life Cycle? 174
9.2 Birth, Death, and the Full Life Cycle 174
9.3 Different Models of Retention 177
9.4 The Art of Population Prediction 183
9.5 Actionable Insights 203

Part IV: Causal Inference Methods 205
  Chapter 10: In Pursuit of the Experiment: Natural Experiments and Difference-in-Difference Modeling 207
10.1 Why Causal Inference? 208
10.2 Causal Inference versus Prediction 208
10.3 When A/B Testing Doesn't Work 211
10.4 Nuts and Bolts of Causal Inference from Real-World Data 213
10.5 Actionable Insights 222

Chapter 11: In Pursuit of the Experiment, Continued 225
11.1 Regression Discontinuity 226
11.2 Estimating the Causal Effect of Gaining a Badge 229
11.3 Interrupted Time Series 234
11.4 Seasonality Decomposition 238
11.5 Actionable Insights 241

Chapter 12: Developing Heuristics in Practice 243
12.1 Determining Causation from Real-World Data 243
12.2 Statistical Matching 244
12.3 Problems with Propensity Score Matching 251
12.4 Matching as a Heuristic 253
12.5 The Best Guess 254
12.6 Final Thoughts 257
12.7 Actionable Insights 258

Chapter 13: Uplift Modeling 259
13.1 What Is Uplift? 259
13.2 Why Uplift? 260
13.3 Understanding Uplift 261
13.4 Prediction and Uplift 261
13.5 Difficulties with Uplift 262
13.6 Actionable Insights 275

Part V: Basic, Predictive, and Causal Inference Methods in R 277
  Chapter 14: Metrics in R 279
14.1 Why R? 279
14.2 R Fundamentals: A Very Basic Introduction to R and Its Setup 280
14.3 Sampling from Distributions in R 285
14.4 Summary Statistics 290
14.5 Q-Q Plot 291
14.6 Calculating Variance and Higher Moments 293
14.7 Histograms and Binning 294
14.8 Bivariate Distribution and Correlation 301
14.9 Parity Progression Ratios 305
14.10 Summary 307

Chapter 15: A/B Testing, Predictive Modeling, and Population Projection in R 309
15.1 A/B Testing in R 309
15.2 Clustering 320
15.3 Predictive Modeling 324
15.4 Population Projection 333
15.5 Actionable Insights 342

Chapter 16: Regression Discontinuity, Matching, and Uplift in R 343
16.1 Difference-in-Difference Modeling 343
16.2 Regression Discontinuity and Time-Series Modeling 346
16.3 Statistical Matching 357
16.4 Uplift Modeling 370
16.5 Actionable Insights 383

Conclusion 387

Bibliography 391
Index 397


EAN / 13-stellige ISBN 978-0135258620
10-stellige ISBN 0135258626
Verlag Pearson ITP
Imprint Addison-Wesley Professional
Sprache Englisch
Auflage 1. Auflage im Jahr 2020
Anmerkungen zur Auflage 1. Auflage
Editionsform Non Books / PBS
Einbandart E-Book
Typ des digitalen Artikels PDF
Copyright PDF Watermark
Erscheinungsdatum 27. August 2020
Seitenzahl 360
Beilage Electronic book text
Warengruppe des Lieferanten Naturwissenschaften - Informatik, EDV
Mehrwertsteuer 7% (im angegebenen Preis enthalten)
Bestseller aus dieser Kategorie

Naturwissenschaften - Informatik, EDV

Noch nicht das passende gefunden?
Verschenken Sie einfach einen Gutschein.

Auch hier werden natürlich 75% des Gewinns gespendet.

Gutschein kaufen

Was unsere Kunden sagen:

Impressum Datenschutz Hilfe / FAQ