Mengentheoretische Topologie – Boto von Querenburg | buch7 – Der soziale Buchhandel
Bitte warten ...
icon suche icon merkliste icon warenkorb
Blick ins Buch

Mengentheoretische Topologie

Eine verständliche und vollständige Einführung in die Mengentheoretische Topologie, die als Begleittext zu einer Vorlesung, aber auch zum Selbststudium für Studenten ab dem 3. Semester bestens geeignet ist. Zahlreiche Aufgaben ermöglichen ein systematisches Erlernen des Stoffes, wobei Lösungshinweise bzw. Musterlösungen zu ausgewählten Aufgaben bereitgestellt werden.
In den ersten 10 Kapiteln werden die wichtigen Begriffe und Ergebnisse der Mengentheoretischen Topologie abgehandelt. Daran schließt sich die Untersuchung uniformer Strukturen in Kapitel 11-12 an. Zur Vertiefung werden Funktionenräume, Vervollständigungen und Kompaktifizierungen in Kapitel 13-15 behandelt. Für die Neuauflage wurden fünf zusätzliche Kapitel über topologische Strukturen in topologischen Gruppen sowie ein Abschnitt über die historischen Entwicklungen der Mengentheoretischen Topologie und der topologischen Gruppen zugefügt.

Taschenbuch 03/2001
kostenloser Standardversand in DE 5 Stück auf Lager
Lieferung bis Do, 21.Jan. (ca. ¾), oder Fr , 22.Jan. (ca. ¼): bestellen Sie in den nächsten 6 Stunden, 48 Minuten mit Paketversand.

Die angegebenen Lieferzeiten beziehen sich auf den Paketversand und sofortige Zahlung (z.B. Zahlung per Lastschrift, PayPal oder Sofortüberweisung).
Der kostenlose Standardversand (2-5 Werktage) benötigt in der Regel länger als der kostenpflichtige Paketversand (1-2 Werktage). Sonderfälle, die zu längeren Lieferzeiten führen können (Bsp: Bemerkung für Kundenservice, Zahlung per Vorkasse oder Sendung ins Ausland) haben wir hier für Sie detailliert beschrieben.

Spenden icon Dank Ihres Kaufes spendet buch7 ca. 1,22 € bis 2,27 €.

Die hier angegebene Schätzung beruht auf dem durchschnittlichen Fördervolumen der letzten Monate und Jahre. Über die Vergabe und den Umfang der finanziellen Unterstützung entscheidet das Gremium von buch7.de.

Die genaue Höhe hängt von der aktuellen Geschäftsentwicklung ab. Natürlich wollen wir so viele Projekte wie möglich unterstützen.

Den tatsächlichen Umfang der Förderungen sowie die Empfänger sehen Sie auf unserer Startseite rechts oben, mehr Details finden Sie hier.

Weitere Informationen zu unserer Kostenstruktur finden Sie hier.

Inhaltsverzeichnis

0 Bezeichnungen und mengentheoretische Grundlagen.- 1 Metrische Räume.- A Grundlegende Definitionen und Beispiele.- B Offene und abgeschlossene Mengen, Umgebungen.- C Stetige Abbildungen.- D Konvergente Folgen.- E Trennungseigenschaften in Metrischen Räumen.- Aufgaben.- 2 Topologische Räume und stetige Abbildungen.- A Topologische Räume.- B Umgebungen.- C Stetige Abbildungen.- Aufgaben.- 3 Erzeugung topologischer Räume.- A Unterraumtopologie, Produkttopologie.- B Initialtopologie.- C Finaltopologie, Quotiententopologie.- D Identifizierungstopologie, Zusammenkleben von topologischen Räumen.- E Mannigfaltigkeiten und topologische Gruppen.- Aufgaben.- 4 Zusammenhängende Räume.- A Zusammenhängende Räume.- B Wegzusammenhang, Lokaler Zusammenhang.- Aufgaben.- 5 Filter und Konvergenz.- A Folgen.- B Netze.- C Filter.- Aufgaben.- 6 Trennungseigenschaften.- A Trennungseigenschaften topologischer Räume.- B Vererbbarkeit von Trennungseigenschaften.- C Fortsetzung stetiger Abbildungen.- Aufgaben.- 7 Normale Räume.- A Das Lemma von Urysohn.- B Fortsetzung stetiger Abbildungen.- C Lokal-endliche Systeme und Partitionen der Eins.- Aufgaben.- 8 Kompakte Räume.- A Kompakte Räume.- B Lokalkompakte Räume.- C Andere Kompaktheitsbegriffe.- Aufgaben.- 9 Satz von Stone-Weierstraß.- Aufgaben.- 10 Parakompakte Räume und Metrisationssätze.- A Parakompakte Räume.- B Metrisationssätze.- Aufgaben.- 11 Uniforme Räume.- A Uniforme Räume.- B Gleichmäßig stetige Abbildungen.- C Konstruktion uniformer Räume.- D Uniformisierung.- Aufgaben.- 12 Vervollständigung und Kompaktifizierung A Vervollständigung uniformer Räume.- B Kompaktifizierung vollständig regulärer Räume.- Aufgaben.- 13 Vollständige, Polnische und Baire'sche Räume.- A Vollständige Räume.- B Vollständige metrische Räume.- C Polnische Räume.- D Baire'sche Räume.- E Anwendungen des Baire'schen Satzes.- Aufgaben.- 14 Funktionenräume.- A Die uniforme Struktur der S-Konvergenz.- B Kompakt-offene Topologie.- C Gleichgradige Stetigkeit und Satz von Arzéla-Ascoli.- Aufgaben.- 15 Ringe stetiger, reellwertiger Funktionen.- A Z-Mengen und Z-Filter.- B Stone-?ech-Kompaktifizierung.- Aufgaben.- 16 Topologische Gruppen.- A Grundbegriffe der Gruppentheorie.- B Topologische Gruppen.- C Untergruppen und Quotientengruppen.- Aufgaben.- 17 Zur Integrationstheorie.- A Integral.- B Messbare Mengen.- C Reelle Lp-Räume.- D Der duale Raum zu Lp.- E Integration auf lokalkompakten Räumen.- F Komplexwertige reguläre Maße.- Aufgaben.- 18 Banachräume und Banachalgebren.- A Banachräume.- B Beschränkte lineare Transformationen.- C Lineare Funktionale und der konjugierte Raum.- D Maximale Ideale in Ringen und Algebren.- E Spektrum, Inverse und Adverse.- F Gelfand'sche Theorie kommutativer Banachalgebren.- Aufgaben.- 19 Invariante Integration auf lokalkompakten Gruppen.- A Konstruktion des Haar'schen Integrales.- B Faltung und 1. Eindeutigkeitsbeweis.- C 2. Eindeutigkeitsbeweis nach Weil-von Neumann.- D Eigenschaften des Haar'schen Integrales.- E Die Modulfunktion.- F Die Gruppenalgebra.- Aufgaben.- 20 Die duale Gruppe.- A Die Charaktergruppe.- B Die Charaktere lokalkompakter abelscher Gruppen.- C Die Fourier-Stieltjes Transformierten.- D Positiv-definite Funktionen und Inversionssatz.- E Pontryagin'scher Dualitätssatz und Anwendungen.- Aufgaben.- 21 Zur historischen Entwicklung der mengentheoretischen Topologie.- A Anmerkungen zu Kapitel 1-3.- B Anmerkungen zu Kapitel 4, 6-8.- C Anmerkungen zu Kapitel 5.- D Anmerkungen zu Kapitel 10.- E Anmerkungen zu Kapitel 9, 11 und 14.- F Anmerkungen zu Kapitel 12, 13 und 15.- Diagramm.- Symbole.

Produktdetails

EAN / 13-stellige ISBN 978-3540677901
10-stellige ISBN 3540677909
Verlag Springer-Verlag GmbH
Sprache Deutsch
Auflage 3. Auflage im Jahr 2001
Anmerkungen zur Auflage 3., neubearb. u. erw. A
Editionsform Hardcover / Softcover / Karten
Einbandart Taschenbuch
Erscheinungsdatum 13. März 2001
Seitenzahl 353
Format (L×B×H) 23,5cm × 15,5cm × 2,0cm
Gewicht 569g
Warengruppe des Lieferanten Naturwissenschaften - Mathematik
Mehrwertsteuer 7% (im angegebenen Preis enthalten)
Bestseller aus dieser Kategorie

Naturwissenschaften - Mathematik

Kunden, die diesen Artikel gekauft haben, kauften auch:

Noch nicht das passende gefunden?
Verschenken Sie einfach einen Gutschein.

Auch hier werden natürlich 75% des Gewinns gespendet.

Gutschein kaufen

Was unsere Kunden sagen:

Impressum Datenschutz Hilfe / FAQ