This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds.
Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations.
The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author's skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 - when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject.
The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Die hier angegebene Schätzung beruht auf dem durchschnittlichen Fördervolumen der letzten Monate und Jahre. Über die Vergabe und den Umfang der finanziellen Unterstützung entscheidet das Gremium von buch7.de.
Die genaue Höhe hängt von der aktuellen Geschäftsentwicklung ab. Natürlich wollen wir so viele Projekte wie möglich unterstützen.
Den tatsächlichen Umfang der Förderungen sowie die Empfänger sehen Sie auf unserer Startseite rechts oben, mehr Details finden Sie hier.
Weitere Informationen zu unserer Kostenstruktur finden Sie hier.
Pavel Grinfeld is currently a professor of mathematics at Drexel University, teaching courses in linear algebra, tensor analysis, numerical computation, and financial mathematics. Drexel is interested in recording Grinfeld's lectures on tensor calculus and his course is becoming increasingly popular. Visit Professor Grinfeld's series of lectures on tensor calculus on YouTube's playlist: http://bit.ly/1lc2JiY http://bit.ly/1lc2JiY
Also view the author's Forum/Errata/Solution Manual (Coming soon): http://bit.ly/1nerfEf
The author has published in a number of journals including 'Journal of Geometry and Symmetry in Physics' and 'Numerical Functional Analysis and Optimization'. Grinfeld received his PhD from MIT under Gilbert Strang.
Preface.- Why Tensor Calculus?.- 1. Rules of the Game.- 2. Coordinate Systems and the Role of Tensor Calculus.- 3. Change of Coordinates.- 4. Tensor Description of Euclidean Spaces.- 5. The Tensor Property.- 6. Covariant Differentiation.- 7. Determinants and the Levi-Civita Symbol.- 8. Tensor Description of Surfaces.- 9. Covariant Derivative of Tensors with Surface Indices.- 10. The Curvature Tensor.- 11. Covariant Derivative of Tensors with Spatial Indices.- 12. Integration and Gauss's Theorem.- 13. Intrinsic Features of Embedded Surfaces.- 14. Further Topics in Differential Geometry.- 15. Classical Problems in the Calculus of Variations.- 16. Equations of Classical Mechanics.- 17. Equations of Continuum Mechanics.- 18. Einstein's Theory of Relativity.- 19. The Rules of Calculus of Moving Surfaces.- 20. Applications of the Calculus of Moving Surfaces.
EAN / 13-stellige ISBN | 978-1461478669 |
10-stellige ISBN | 1461478669 |
Verlag | Springer New York |
Sprache | Englisch |
Anmerkungen zur Auflage | 2013 |
Editionsform | Hardcover / Softcover / Karten |
Einbandart | Gebunden |
Erscheinungsdatum | 24. September 2013 |
Seitenzahl | 316 |
Beilage | HC runder Rücken kaschiert |
Format (L×B×H) | 24,1cm × 16,0cm × 2,3cm |
Gewicht | 641g |
Warengruppe des Lieferanten | Naturwissenschaften - Mathematik |
Mehrwertsteuer | 7% (im angegebenen Preis enthalten) |
Naturwissenschaften - Mathematik
Auch hier werden natürlich 75% des Gewinns gespendet.
Gutschein kaufen
Die beiden Male, die ich in den letzten Jahren konkret Kontakt zu Buch7 hatte, habe ich mich wirklich und richtig gut beraten und "umsorgt" gefühlt. Vielen Dank dafür!
Birgit H. aus Troisdorf
Vielen Dank, dass Sie so eine nette Alternative zu Amazon anbieten.
Kathrin H. aus Barsbüttel
Wie lange habe ich darauf gewartet! Mir war das Buch Bestellen bei Amazon schon lange unheimlich. Und dann begegnet mir buch7. Eine Bestellmöglichkeit, die komfortabel, transparent, ehrlich und sozial engagiert ist. Was für eine Freude!
Stefan A.
Ich bin mit dem von Ihnen immer wieder erbrachten Service mehr als zufrieden und empfehle Sie mit bestem Gewissen bei jeder Gelegenheit weiter. Neben dem kontinuierlich erbrachten "Sterne-Service" schätze ich besonders die nette und freundliche Art des Kontakts.
C. A.
Herzlichen Dank für die schnelle Bearbeitung und die prompte Lieferung!
Matthias M.