Elements of Multivariate Time Series Analysis – Gregory C. Reinsel | buch7 – Der soziale Buchhandel
Bitte warten ...
icon suche icon merkliste icon warenkorb
Blick ins Buch

Elements of Multivariate Time Series Analysis

1x

The use of methods of time series analysis in the study of multivariate time series has become of increased interest in recent years. Although the methods are rather well developed and understood for univarjate time series analysis, the situation is not so complete for the multivariate case. This book is designed to introduce the basic concepts and methods that are useful in the analysis and modeling of multivariate time series, with illustrations of these basic ideas. The development includes both traditional topics such as autocovariance and auto­ correlation matrices of stationary processes, properties of vector ARMA models, forecasting ARMA processes, least squares and maximum likelihood estimation techniques for vector AR and ARMA models, and model checking diagnostics for residuals, as well as topics of more recent interest for vector ARMA models such as reduced rank structure, structural indices, scalar component models, canonical correlation analyses for vector time series, multivariate unit-root models and cointegration structure, and state-space models and Kalman filtering techniques and applications. This book concentrates on the time-domain analysis of multivariate time series, and the important subject of spectral analysis is not considered here. For that topic, the reader is referred to the excellent books by Jenkins and Watts (1968), Hannan (1970), Priestley (1981), and others.

E-Book 12/2012
PDF kein Kopierschutz
  • eReader
  • kindle
  • Computer
  • Smartphone

kein Adobe Account notwendig | Schriftgröße ist nicht veränderbar/einstellbar


Sie erhalten nach dem Kauf das Buch als ganz normale PDF-Datei, die Sie an jedem Gerät lesen können, das PDFs anzeigen kann. PDFs werden überall gleich angezeigt. Wir empfehlen dieses Format, da es ohne DRM (digitales Rechte-Management) auskommt.


Sofort lieferbar (Download)
Die angegebene Lieferzeit bezieht sich auf sofortige Zahlung (z.B. Zahlung per Lastschrift, PayPal oder Sofortüberweisung).
Sonderfälle, die zu längeren Lieferzeiten führen können (Bsp: Bemerkung für Kundenservice oder Zahlung per Vorkasse) haben wir hier für Sie detailliert beschrieben.
Spenden icon Dank Ihres Kaufes spendet buch7 ca. 2,88 € bis 5,35 €.

Die hier angegebene Schätzung beruht auf dem durchschnittlichen Fördervolumen der letzten Monate und Jahre. Über die Vergabe und den Umfang der finanziellen Unterstützung entscheidet das Gremium von buch7.de.

Die genaue Höhe hängt von der aktuellen Geschäftsentwicklung ab. Natürlich wollen wir so viele Projekte wie möglich unterstützen.

Den tatsächlichen Umfang der Förderungen sowie die Empfänger sehen Sie auf unserer Startseite rechts oben, mehr Details finden Sie hier.

Weitere Informationen zu unserer Kostenstruktur finden Sie hier.

1x

Inhaltsverzeichnis

1. Vector Time Series and Model Representations.- 1.1 Stationary Multivariate Time Series and Their Properties.- 1.1.1 Covariance and Correlation Matrices for a Stationary Vector Process.- 1.1.2 Some Spectral Characteristics for a Stationary Vector Process.- 1.1.3 Some Relations for Linear Filtering of a Stationary Vector Process.- 1.2 Linear Model Representations for a Stationary Vector Process.- 1.2.1 Infinite Moving Average (Wold) Representation of a Stationary Vector Process.- 1.2.2 Vector Autoregressive Moving Average (ARMA) Model Representations.- A1 Appendix: Review of Multivariate Normal Distribution and Related Topics.- A1.1 Review of Some Basic Matrix Theory Results.- A1.2 Expected Values and Covariance Matrices of Random Vectors.- A1.3 The Multivariate Normal Distribution.- A1.4 Some Basic Results on Stochastic Convergence.- 2. Vector ARMA Time Series Models and Forecasting.- 2.1 Vector Moving Average Models.- 2.1.1 Invertibility of the Vector Moving Average Model.- 2.1.2 Covariance Matrices of the Vector Moving Average Model.- 2.1.3 Features of the Vector MA(1) Model.- 2.1.4 Model Structure for Subset of Components in the Vector MA Model.- 2.2 Vector Autoregressive Models.- 2.2.1 Stationarity of the Vector Autoregressive Model.- 2.2.2 Yule-Walker Relations for Covariance Matrices of a Vector AR Process.- 2.2.3 Covariance Features of the Vector AR(1) Model.- 2.2.4 Univariate Model Structure Implied by Vector AR Model.- 2.3 Vector Mixed Autoregressive Moving Average Models.- 2.3.1 Stationarity and Invertibility of the Vector ARMA Model.- 2.3.2 Relations for the Covariance Matrices of the Vector ARMA Model.- 2.3.3 Some Features of the Vector ARMA(1, 1) Model.- 2.3.4 Consideration of Parameter Identifiability for Vector ARMA Models.- 2.3.5 Further Aspects of Nonuniqueness of Vector ARMA Model Representations.- 2.4 Nonstationary Vector ARMA Models.- 2.4.1 Vector ARIMA Models for Nonstationary Processes.- 2.4.2 Cointegration in Nonstationary Vector Processes.- 2.4.3 The Vector IMA(1, 1) Process or Exponential Smoothing Model.- 2.5 Prediction for Vector ARMA Models.- 2.5.1 Minimum Mean Squared Error Prediction.- 2.5.2 Forecasting for Vector ARMA Processes and Covariance Matrices of Forecast Errors.- 2.5.3 Computation of Forecasts for Vector ARMA Processes.- 2.5.4 Some Examples of Forecast Functions for Vector ARMA Models.- 3. Canonical Structure of Vector ARMA Models.- 3.1 Consideration of Kronecker Structure for Vector ARMA Models.- 3.1.1 Kronecker Indices and McMillan Degree of Vector ARMA Process.- 3.1.2 Echelon Form Structure of Vector ARMA Model Implied by Kronecker Indices.- 3.1.3 Reduced-Rank Form of Vector ARMA Model Implied by Kronecker Indices.- 3.2 Canonical Correlation Structure for ARMA Time Series.- 3.2.1 Canonical Correlations for Vector ARMA Processes.- 3.2.2 Relation to Scalar Component Model Structure.- 3.3 Partial Autoregressive and Partial Correlation Matrices.- 3.3.1 Vector Autoregressive Model Approximations and Partial Autoregression Matrices.- 3.3.2 Recursive Fitting of Vector AR Model Approximations.- 3.3.3 Partial Cross-Correlation Matrices for a Stationary Vector Process.- 3.3.4 Partial Canonical Correlations for a Stationary Vector Process.- 4. Initial Model Building and Least Squares Estimation for Vector AR Models.- 4.1 Sample Cross-Covariance and Correlation Matrices and Their Properties.- 4.1.1 Sample Estimates of Mean Vector and of Covariance and Correlation Matrices.- 4.1.2 Asymptotic Properties of Sample Correlations.- 4.2 Sample Partial AR and Partial Correlation Matrices and Their Properties.- 4.2.1 Test for Order of AR Model Based on Sample Partial Autoregression Matrices.- 4.2.2 Equivalent Test Statistics Based on Sample Partial Correlation Matrices.- 4.3 Conditional Least Squares Estimation of Vector AR Models.- 4.3.1 Least Squares Estimation for the Vector AR(1) Model.- 4.3.2 Least Squares Estimation for the Vector AR Model of General Order.- 4.3.3 Likelihood Ratio Testing for the Order of the AR Model.- 4.3.4 Derivation of the Wald Statistic for Testing the Order of the AR Model.- 4.4 Relation of LSE to Yule-Walker Estimate for Vector AR Models.- 4.5 Additional Techniques for Specification of Vector ARMA Models.- 4.5.1 Use of Order Selection Criteria for Model Specification.- 4.5.2 Sample Canonical Correlation Analysis Methods.- 4.5.3 Order Determination Using Linear LSE Methods for the Vector ARMA Model.- A4 Appendix: Review of the General Multivariate Linear Regression Model.- A4.1 Properties of the Maximum Likelihood Estimator of the Regression Matrix.- A4.2 Likelihood Ratio Test of Linear Hypothesis About Regression Coefficients.- A4.3 Asymptotically Equivalent Forms of the Test of Linear Hypothesis.- 5. Maximum Likelihood Estimation and Model Checking for Vector ARMA Models.- 5.1 Conditional Maximum Likelihood Estimation for Vector ARMA Models.- 5.1.1 Conditional Likelihood Function for the Vector ARMA Model.- 5.1.2 Likelihood Equations for Conditional ML Estimation.- 5.1.3 Iterative Computation of the Conditional MLE by GLS Estimation.- 5.1.4 Asymptotic Distribution for the MLE in the Vector ARMA Model.- 5.2 ML Estimation and LR Testing of ARMA Models Under Linear Restrictions.- 5.2.1 ML Estimation of Vector ARMA Models with Linear Constraints on the Parameters.- 5.2.2 LR Testing of the Hypothesis of the Linear Constraints.- 5.2.3 ML Estimation of Vector ARMA Models in the Echelon Canonical Form.- 5.3 Exact Likelihood Function for Vector ARMA Models.- 5.3.1 Expressions for the Exact Likelihood Function and Exact Backcasts.- 5.3.2 Special Cases of the Exact Likelihood Results.- 5.4 Innovations Form of the Exact Likelihood Function for ARMA Models.- 5.4.1 Use of Innovations Algorithm Approach for the Exact Likelihood.- 5.4.2 Prediction of Vector ARMA Processes Using the Innovations Approach.- 5.5 Overall Checking for Model Adequacy.- 5.5.1 Residual Correlation Matrices, and Overall Goodness-of-Fit Test.- 5.5.2 Asymptotic Distribution of Residual Covariances and Goodness-of-Fit Statistic.- 5.5.3 Use of the Score Test Statistic for Model Diagnostic Checking.- 5.6 Effects of Parameter Estimation Errors on Prediction Properties.- 5.6.1 Effects of Parameter Estimation Errors on Forecasting in the Vector AR(p) Model.- 5.6.2 Prediction Through Approximation by Autoregressive Model Fitting.- 5.7 Numerical Examples.- 6. Reduced-Rank and Nonstationary Co-Integrated Models.- 6.1 Nested Reduced-Rank AR Models and Partial Canonical Correlation Analysis.- 6.1.1 Specification of Ranks Through Partial Canonical Correlation Analysis.- 6.1.2 Canonical Form for the Reduced-Rank Model.- 6.1.3 Maximum Likelihood Estimation of Parameters in the Model.- 6.1.4 Relation of Reduced-Rank AR Model with Scalar Component Models and Kronecker Indices.- 6.2 Review of Estimation and Testing for Nonstationarity (Unit Roots) in Univariate ARIMA Models.- 6.2.1 Limiting Distribution Results in the AR(1) Model with a Unit Root.- 6.2.2 Unit-Root Distribution Results for General Order AR Models.- 6.3 Nonstationary (Unit-Root) Multivariate AR Models, Estimation, and Testing.- 6.3.1 Unit-Root Nonstationary Vector AR Model, and the Error-Correction Form.- 6.3.2 Asymptotic Properties of the Least Squares Estimator.- 6.3.3 Reduced-Rank Estimation of the Error-Correction Form of the Model.- 6.3.4 Likelihood Ratio Test for the Number of Unit Roots.- 6.3.5 Reduced-Rank Estimation Through Partial Canonical Correlation Analysis.- 6.3.6 Extension to Account for a Constant Term in the Estimation.- 6.3.7 Forecast Properties for the Co-integrated Model.- 6.3.8 Explicit Unit-Root Structure of the Nonstationary AR Model and Implications.- 6.3.9 Further Numerical Examples.- 6.4 Multiplicative Seasonal Vector ARMA Models.- 6.4.1 Some Special Seasonal ARMA Models for Vector Time Series.- 7. State-Space Models, Kalman Filtering, and Related Topics.- 7.1 State-Variable Models and Kalman Filtering.- 7.1.1 The Kalman Filtering Relations.- 7.1.2 Smoothing Relations in the State-Variable Model.- 7.1.3 Innovations Form of State-Space Model and Steady-State for Time-Invariant Models.- 7.2 State-Variable Representations of the Vector ARMA Model.- 7.2.1 A State-Space Form Based on the Prediction Space of Future Values.- 7.2.2 Exact Likelihood Function Through the State-Variable Approach.- 7.2.3 Alternate State-Space Forms for the Vector ARMA Model.- 7.2.4 Minimal Dimension State-Variable Representation and Kronecker Indices.- 7.2.5 (Minimal Dimension) Echelon Canonical State-Space Representation.- 7.3 Exact Likelihood Estimation for Vector ARMA Processes with Missing Values.- 7.4 Classical Approach to Smoothing and Filtering of Time Series.- 7.4.1 Smoothing for Univariate Time Series.- 7.4.2 Smoothing Relations for the Signal Plus Noise or Structural Components Model.- 7.4.3 A Simple Vector Structural Component Model for Trend.- Appendix: Time Series Data Sets.- Exercises and Problems.- References.

Produktdetails

EAN / 13-stellige ISBN 978-1468401981
10-stellige ISBN 146840198X
Verlag Springer US
Imprint Springer
Sprache Englisch
Anmerkungen zur Auflage 1993
Editionsform Non Books / PBS
Einbandart E-Book
Typ des digitalen Artikels PDF
Copyright PDF Watermark
Erscheinungsdatum 06. Dezember 2012
Seitenzahl 263
Illustrationenbemerkung XIV, 263 p.
Warengruppe des Lieferanten Naturwissenschaften - Mathematik
Mehrwertsteuer 7% (im angegebenen Preis enthalten)
Bestseller aus dieser Kategorie

Naturwissenschaften - Mathematik

Noch nicht das Passende gefunden?
Verschenken Sie einfach einen Gutschein.

Auch hier werden natürlich 75% des Gewinns gespendet.

Gutschein kaufen

Was unsere Kund/innen sagen:

Impressum Datenschutz Hilfe / FAQ