Advances in Self-Organizing Maps and Learning Vector Quantization – Thomas Villmann, Frank-Michael Schlei... | buch7 – Der soziale Buchhandel
Bitte warten ...
icon suche icon merkliste icon warenkorb
Blick ins Buch

Advances in Self-Organizing Maps and Learning Vector Quantization

Proceedings of the 10th International Workshop, WSOM 2014, Mittweida, Germany, July, 2-4, 2014

1x

The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2-4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.

This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks. Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis and time series analysis. Other chapters present the latest theoretical work on self-organizing maps as well as learning vector quantization methods, such as relating those methods to classical statistical decision methods.

All the contribution demonstrate that vector quantization methods cover a large range of application areas including data visualization of high-dimensional complex data, advanced decision making and classification or data clustering and data compression.

E-Book 06/2014
PDF kein Kopierschutz
  • eReader
  • kindle
  • Computer
  • Smartphone

kein Adobe Account notwendig | Schriftgröße ist nicht veränderbar/einstellbar


Sie erhalten nach dem Kauf das Buch als ganz normale PDF-Datei, die Sie an jedem Gerät lesen können, das PDFs anzeigen kann. PDFs werden überall gleich angezeigt. Wir empfehlen dieses Format, da es ohne DRM (digitales Rechte-Management) auskommt.


Sofort lieferbar (Download)
Die angegebene Lieferzeit bezieht sich auf sofortige Zahlung (z.B. Zahlung per Lastschrift, PayPal oder Sofortüberweisung).
Sonderfälle, die zu längeren Lieferzeiten führen können (Bsp: Bemerkung für Kundenservice oder Zahlung per Vorkasse) haben wir hier für Sie detailliert beschrieben.
Spenden icon Dank Ihres Kaufes spendet buch7 ca. 7,83 € bis 14,54 €.

Die hier angegebene Schätzung beruht auf dem durchschnittlichen Fördervolumen der letzten Monate und Jahre. Über die Vergabe und den Umfang der finanziellen Unterstützung entscheidet das Gremium von buch7.de.

Die genaue Höhe hängt von der aktuellen Geschäftsentwicklung ab. Natürlich wollen wir so viele Projekte wie möglich unterstützen.

Den tatsächlichen Umfang der Förderungen sowie die Empfänger sehen Sie auf unserer Startseite rechts oben, mehr Details finden Sie hier.

Weitere Informationen zu unserer Kostenstruktur finden Sie hier.

1x

Inhaltsverzeichnis

How Many Dissimilarity/Kernel Self Organizing Map Variants Do We Need.- Dynamic formation of self-organizing maps.- MS-SOM: Magnitude Sensitive Self-Organizing Maps.- Bagged Kernel SOM.- Probability ridges and distortion flows: Visualizing multivariate time series using a variational Bayesian manifold learning method.- Short review of dimensionality reduction methods based on stochastic neighbour embedding.- Attention based Classification Learning in GLVQ and Asymmetric Classification Error Assessment.-Visualization and Classification of DNA sequences using Pareto learning Self Organizing Maps based on Frequency and Correlation Coefficient.- Probabilistic prototype classification using t-norms.- Rejection Strategies for Learning Vector Quantization - a Comparison of Probabilistic and Deterministic Approaches.- Comparison of spectrum cluster analysis with PCA and spherical SOM and related issues not amenable to PCA.- Exploiting the structures of the U-matrix.- Partial Mutual Information for Classification Analysis of Gene expression Data by Learning Vector Quantization.- Composition of Learning Patterns using Spherical Self-Organizing Maps in Image Analysis with Subspace Classifier.- Self-Organizing Map for the Prize-Collecting Traveling Salesman Problem.- A Survey of SOM-based Active Contour Models for Image Segmentation.- Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words.- Prototype-based classifiers and their application in the life sciences.- Generative versus discriminative prototype based classification.- Some room for GLVQ: Semantic Labeling of occupancy grid maps.- Anomaly detection based on confidence intervals using SOM with an application to Health Monitoring.- RFSOM - Extending Self-Organizing feature Maps with adaptive metrics to combine spatial and textural features for body pose estimation.- Beyond Standard Metrics - On the Selection and Combination of Distance Metrics for an Improved.- Classification of Hyperspectral Data.- The Sky Is Not the Limit.- Development of Target Reaching Gesture Map in the Cortex and Its Relation to the Motor Map: A Simulation Study.- A Concurrent SOM-based Chan-Vese Model for Image Segmentation.- Text mining of life-philosophicl insights.- SOMbrero: an R Package for Numeric and Non-numeric Self-Organizing Maps.- K-Nearest Neighbor Nonnegative Matrix Factorization for Learning a Mixture of Local SOM Models.

Produktdetails

EAN / 13-stellige ISBN 978-3319076959
10-stellige ISBN 3319076957
Verlag Springer International Publishing
Imprint Springer
Sprache Englisch
Anmerkungen zur Auflage 2014
Editionsform Non Books / PBS
Einbandart E-Book
Typ des digitalen Artikels PDF
Copyright PDF Watermark
Erscheinungsdatum 10. Juni 2014
Seitenzahl 314
Illustrationenbemerkung XII, 314 p. 114 illus., 81 illus. in color.
Warengruppe des Lieferanten Naturwissenschaften - Technik
Mehrwertsteuer 7% (im angegebenen Preis enthalten)
Bestseller aus dieser Kategorie

Naturwissenschaften - Technik

Noch nicht das Passende gefunden?
Verschenken Sie einfach einen Gutschein.

Auch hier werden natürlich 75% des Gewinns gespendet.

Gutschein kaufen

Was unsere Kund/innen sagen:

Impressum Datenschutz Hilfe / FAQ